Energy efficiency and performance limitations of linear adaptive control for transition delay

نویسنده

  • Dan S. Henningson
چکیده

A reactive control technique with localised actuators and sensors is used to delay the transition to turbulence in a flat-plate boundary-layer flow. Through extensive direct numerical simulations, it is shown that an adaptive technique, which computes the control law on-line, is able to significantly reduce skin-friction drag in the presence of random three-dimensional perturbation fields with linear and weakly nonlinear behaviour. An energy budget analysis is performed in order to assess the net energy saving capabilities of the linear control approach. When considering a model of the dielectric-barrier-discharge (DBD) plasma actuator, the energy spent to create appropriate actuation force inside the boundary layer is of the same order as the energy gained from reducing skin-friction drag. With a model of an ideal actuator a net energy gain of three orders of magnitude can be achieved by efficiently damping small-amplitude disturbances upstream. The energy analysis in this study thus provides an upper limit for what we can expect in terms of drag-reduction efficiency for linear control of transition as a means for drag reduction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilateral teleoperation control to improve transparency in stiff environment with time delay

This paper proposes a new bilateral control scheme to ensure both transparency and robust stability under unknown constant time delay in stiff environment. Furthermore, this method guaranties suitable performance and robust stability when transition occurs between soft and stiff environments. This framework is composed of an adaptive sliding mode controller and an adaptive impedance controller,...

متن کامل

Modified L1 Adaptive Control Design for Satellite FMC Systems with Actuators Time Delay

A modified method for satellite attitude control system in presence of novel actuators is proposed in this paper. The attitude control system is composed of three fluidic momentum controller (FMC) actuators that are used to control Euler angles and their dynamics is considered in satellite attitude equations as well. L1 adaptive control is utilized for satellite three-axial ...

متن کامل

Adaptive Consensus Control for a Class of Non-affine MIMO Strict-Feedback Multi-Agent Systems with Time Delay

In this paper, the design of a distributed adaptive controller for a class of unknown non-affine MIMO strict-feedback multi agent systems with time delay has been performed under a directed graph. The controller design is based on dynamic surface control  method. In the design process, radial basis function neural networks (RBFNNs) were employed to approximate the unknown nonlinear functions. S...

متن کامل

Fractional order robust adaptive intelligent controller design for fractional-order chaotic systems with unknown input delay, uncertainty and external disturbances

In this paper, a fractional-order robust adaptive intelligent controller (FRAIC) is designed for a class of chaotic fractional order systems with uncertainty, external disturbances and unknown time-varying input time delay. The time delay is considered both constant and time varying. Due to changes in the equilibrium point, adaptive control is used to update the system's momentary information a...

متن کامل

PD Controller Design with H¥ Performance for Linear Systems with Input Delay

This paper presents H∞ control problem for input-delayed systems. A neutral system approach is considered to the design of PD controller for input delay systems in presence of uncertain time-invariant delay. Using this approach, the resulting closed-loop system turns into a specific time-delay system of neutral type. The significant specification of this neutral system is that its delayed coeff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016